If it's not what You are looking for type in the equation solver your own equation and let us solve it.
45p^2+120p-300=0
a = 45; b = 120; c = -300;
Δ = b2-4ac
Δ = 1202-4·45·(-300)
Δ = 68400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{68400}=\sqrt{3600*19}=\sqrt{3600}*\sqrt{19}=60\sqrt{19}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(120)-60\sqrt{19}}{2*45}=\frac{-120-60\sqrt{19}}{90} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(120)+60\sqrt{19}}{2*45}=\frac{-120+60\sqrt{19}}{90} $
| 3x-153x-15-x15x15=3 | | 3x-153x-15-x15*15=3 | | 2x-2=4+14 | | 2x=2+15 | | 2x-23=34-x | | 2m+1–m=4 | | x^2+40x-896=0 | | 2x-23=31-x | | 2(a–8)+3(a+6)=17 | | 4z+5=15 | | x^2+40x-680=0 | | -5+x=-35 | | 7p=-99 | | .d–112=512 | | y–1.2=4.8 | | 2x^-1=12 | | 2−t=1= | | 39.98+0.15x=49.98+0.13x | | X-20=4y | | 18+0.09x=0.14x | | 7x-(35-4)=12 | | 13x+104=7x | | 3w+w+50+7w-13=180 | | v-4+3v-5+33=180 | | 3x+8x-30=180 | | w+20+6w+7w-8=180 | | 120-m2=66 | | w+20+6w+7w–8=180 | | 2y^2-20y=18 | | 2y-20+3y-15+30=180 | | h–5=4 | | 1/4+1/8+1/5+10=x |